Optimizing Power and Performance Trade-offs of MapReduce Job Processing with Heterogeneous Multi-core Processors

Optimizing Power and Performance Trade-offs of MapReduce Job Processing with Heterogeneous Multi-core Processors

                             Optimizing Power and Performance Trade-offs of MapReduce Job Processing with Heterogeneous Multi-core Processors.Modern processors are often constrained by a given power budget that forces designers to consider different trade-offs, e.g., to choose between either many slow, power-efficient cores, or fewer faster, power-hungry cores, or to select a combination of them. In this work, we design and evaluate a new Hadoop scheduler, called DyScale, that exploits capabilities offered by heterogeneous cores within a single multi-core processor for achieving a variety of performance objectives. A typical MapReduce workload contains jobs with different performance goals: large, batch jobs that are throughput oriented, and smaller interactive jobs that are response-time sensitive.

MapReduce-Projects

MapReduce-Projects

Heterogeneous multi-core processors enable creating virtual resource pools based on the different core types for multi-class priority scheduling. These virtual Hadoop clusters, based on “slow” cores versus “fast” cores can effectively support different performance objectives that cannot be achieved in a Hadoop cluster with homogeneous processors. Using detailed measurements and extensive simulation study we argue in favor of heterogeneous multi-core processors as they provide performance means for “faster” processing of the small, interactive MapReduce jobs (up to 40% faster), while at the same time offer an improved throughput (up to 40% higher) for large, batch job processing.

Similar IEEE Project Titles


Work Progress

PHD - 24

M.TECH - 125

B.TECH -95

BIG DATA -110.

HADOOP -90.

ON-GOING Hadoop Projects

HADOOP MAP -90.

HADOOP YARN -27.

HADOOP HEBROS - 25.

HADOOP ZOOKEEPER -18.

Achievements – Hadoop Solutions

Hadoop-Projects-Achievement-Awards

Twitter Feed

Customer Review

Hadoop Solutions 5 Star Rating: Recommended 4.9 - 5 based on 1000+ ratings. 1000+ user reviews.