A Performance Analysis of MapReduce Task with Large Number of Files Dataset in Big Data Using Hadoop.

A Performance Analysis of MapReduce Task with Large Number of Files Dataset in Big Data Using Hadoop. 

                                  A Performance Analysis of MapReduce Task with Large Number of Files Dataset in Big Data Using Hadoop.Big Data is a huge amount of data that cannot be managed by the traditional data management system. Hadoop is a technological answer to Big Data. Hadoop Distributed File System (HDFS) and MapReduce programming model is used for storage and retrieval of the big data. The Tera Bytes size file can be easily stored on the HDFS and can be analyzed with MapReduce.

Big-Data Projects

Big-Data Projects

This paper provides introduction to Hadoop HDFS and MapReduce for storing large number of files and retrieve information from these files. In this paper we present our experimental work done on Hadoop by applying a number of files as input to the system and then analyzing the performance of the Hadoop system. We have studied the amount of bytes written and read by the system and by the MapReduce. We have analyzed the behavior of the map method and the reduce method with increasing number of files and the amount of bytes written and read by these tasks.

Similar IEEE Project Titles

Save

Save


Work Progress

PHD - 24

M.TECH - 125

B.TECH -95

BIG DATA -110.

HADOOP -90.

ON-GOING Hadoop Projects

HADOOP MAP -90.

HADOOP YARN -27.

HADOOP HEBROS - 25.

HADOOP ZOOKEEPER -18.

Achievements – Hadoop Solutions

Hadoop-Projects-Achievement-Awards

Twitter Feed

Customer Review

Hadoop Solutions 5 Star Rating: Recommended 4.9 - 5 based on 1000+ ratings. 1000+ user reviews.